Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(735): eadk1867, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381847

RESUMO

Snakebite envenoming is a major global public health concern for which improved therapies are urgently needed. The antigenic diversity present in snake venom toxins from various species presents a considerable challenge to the development of a universal antivenom. Here, we used a synthetic human antibody library to find and develop an antibody that neutralizes long-chain three-finger α-neurotoxins produced by numerous medically relevant snakes. Our antibody bound diverse toxin variants with high affinity, blocked toxin binding to the nicotinic acetylcholine receptor in vitro, and protected mice from lethal venom challenge. Structural analysis of the antibody-toxin complex revealed a binding mode that mimics the receptor-toxin interaction. The overall workflow presented is generalizable for the development of antibodies that target conserved epitopes among antigenically diverse targets, and it offers a promising framework for the creation of a monoclonal antibody-based universal antivenom to treat snakebite envenoming.


Assuntos
Antivenenos , Mordeduras de Serpentes , Humanos , Animais , Camundongos , Antivenenos/química , Mordeduras de Serpentes/tratamento farmacológico , Neurotoxinas/toxicidade , Anticorpos Amplamente Neutralizantes , Venenos de Serpentes
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298463

RESUMO

The socioeconomic impact of snakebites in India is largely attributed to a subset of snake species commonly known as the 'big four'. However, envenoming by a range of other clinically important yet neglected snakes, a.k.a. the 'neglected many', also adds to this burden. The current approach of treating bites from these snakes with the 'big four' polyvalent antivenom is ineffective. While the medical significance of various species of cobras, saw-scaled vipers, and kraits is well-established, the clinical impact of pit vipers from regions such as the Western Ghats, northeastern India, and the Andaman and Nicobar Islands remains poorly understood. Amongst the many species of snakes found in the Western Ghats, the hump-nosed (Hypnale hypnale), Malabar (Craspedocephalus malabaricus), and bamboo (Craspedocephalus gramineus) pit vipers can potentially inflict severe envenoming. To evaluate the severity of toxicity inflicted by these snakes, we characterised their venom composition, biochemical and pharmacological activities, and toxicity- and morbidity-inducing potentials, including their ability to damage kidneys. Our findings highlight the therapeutic inadequacies of the Indian and Sri Lankan polyvalent antivenoms in neutralising the local and systemic toxicity resulting from pit viper envenomings.


Assuntos
Crotalinae , Mordeduras de Serpentes , Viperidae , Animais , Antivenenos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras
3.
Toxins (Basel) ; 14(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36355975

RESUMO

Among the medically most important snakes in the world, the species belonging to the genus Daboia have been attributed to the highest number of human envenomings, deaths and disabilities. Given their significant clinical relevance, the venoms of Russell's vipers (D. russelii and D. siamensis) have been the primary focus of research. In contrast, the composition, activity, ecology and evolution of venom of its congener, the Palestine viper (D. palaestinae), have remained largely understudied. Therefore, to unravel the factors responsible for the enhanced medical relevance of D. russelii in comparison to D. palaestinae, we comparatively evaluated their venom proteomes, biochemical activities, and mortality and morbidity inflicting potentials. Furthermore, the synthesis and regulation of venom in snakes have also remained underinvestigated, and the relative contribution of each venom gland remains unclear. We address this knowledge gap by sequencing the tissue transcriptomes of both venom glands of D. palaestinae, and comparatively evaluating their contribution to the secreted venom concoction. Our findings highlight the disparity in the venom composition, function and toxicities of the two Daboia species. We also show that toxin production is not partitioned between the two venom glands of D. palaestinae.


Assuntos
Mordeduras de Serpentes , Animais , Humanos , Venenos de Víboras/química , Proteoma , Antivenenos
4.
Toxins (Basel) ; 14(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35324665

RESUMO

Snake envenoming afflicts the Indian subcontinent with the highest rates of mortality (47,000) and morbidity globally. The only effective treatment for snakebites is the administration of antivenom, which is produced by the hyperimmunisation of equines. Commercial Indian antivenoms, however, have been shown to exhibit a poor preclinical performance in neutralising venom, as a result of inter- and intrapopulation snake venom variation. Additionally, their poor dose effectiveness necessitates the administration of larger volumes of antivenom for treatment, leading to several harmful side effects in snakebite victims, including serum sickness and fatal anaphylaxis. In this study, we employed chromatographic purification to enhance the dose efficacy of commercial Indian antivenoms. The efficacy of this 'second-generation' antivenom was comparatively evaluated against six other marketed antivenoms using a number of in vitro and in vivo preclinical assays, which revealed its superior venom recognition capability. Enhanced purity also resulted in significant improvements in dose effectiveness, as the 'second-generation' antivenom exhibited a 3 to 4.5 times increased venom neutralisation potential. Furthermore, preclinical assays revealed the increased effectiveness of the 'second-generation' antivenom in countering morbid effects inflicted by the 'big four' Indian snakes. Thus, we demonstrate the role of simpler purification steps in significantly enhancing the effectiveness of snakebite therapy in regions that are most affected by snakebites.


Assuntos
Antivenenos , Mordeduras de Serpentes , Animais , Antivenenos/química , Antivenenos/uso terapêutico , Cavalos , Índia , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/química , Serpentes
5.
Front Mol Biosci ; 9: 1066793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601583

RESUMO

Distinct animal lineages have convergently recruited venoms as weaponry for prey capture, anti-predator defence, conspecific competition, or a combination thereof. Most studies, however, have been primarily confined to a narrow taxonomic breadth. The venoms of cone snails, snakes, spiders and scorpions remain particularly well-investigated. Much less explored are the venoms of wasps (Order: Hymenoptera) that are infamous for causing excruciating and throbbing pain, justifying their apex position on Schmidt's pain index, including some that are rated four on four. For example, the lesser banded wasp (V. affinis) is clinically important yet has only been the subject of a few studies, despite being commonly found across tropical and subtropical Asia. Stings from these wasps, especially from multiple individuals of a nest, often lead to clinically severe manifestations, including mastocytosis, myasthenia gravis, optic neuropathy, and life-threatening pathologies such as myocardial infarction and organ failure. However, their venom composition and activity remain unexplored in the Indian subcontinent. Here, we report the proteomic composition, transcriptomic profile, and biochemical and pharmacological activities of V. affinis venom from southern India. Our findings suggest that wasp venoms are rich in diverse toxins that facilitate antipredator defence. Biochemical and pharmacological assessments reveal that these toxins can exhibit significantly higher activities than their homologues in medically important snakes. Their ability to exert potent effects on diverse molecular targets makes them a treasure trove for discovering life-saving therapeutics. Fascinatingly, wasp venoms, being evolutionarily ancient, exhibit a greater degree of compositional and sequence conservation across very distant populations/species, which contrasts with the patterns of venom evolution observed in evolutionarily younger lineages, such as advanced snakes and cone snails.

6.
Front Pharmacol ; 12: 768210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759827

RESUMO

The Andaman and Nicobar Islands are an abode to a diversity of flora and fauna, including the many endemic species of snakes, such as the elusive Andaman cobra (Naja sagittifera). However, the ecology and evolution of venomous snakes inhabiting these islands have remained entirely uninvestigated. This study aims to bridge this knowledge gap by investigating the evolutionary history of N. sagittifera and its venom proteomic, biochemical and toxicity profile. Phylogenetic reconstructions confirmed the close relationship between N. sagittifera and the Southeast Asian monocellate cobra (N. kaouthia). Overlooking this evolutionary history, a polyvalent antivenom manufactured using the venom of the spectacled cobra (N. naja) from mainland India is used for treating N. sagittifera envenomations. Comparative evaluation of venoms of these congeners revealed significant differences in their composition, functions and potencies. Given the close phylogenetic relatedness between N. sagittifera and N. kaouthia, we further assessed the cross-neutralising efficacy of Thai monovalent N. kaouthia antivenom against N. sagittifera venoms. Our findings revealed the inadequate preclinical performance of the Indian polyvalent and Thai monovalent antivenoms in neutralising N. sagittifera venoms. Moreover, the poor efficacy of the polyvalent antivenom against N. naja venom from southern India further revealed the critical need to manufacture region-specific Indian antivenoms.

7.
J Proteomics ; 242: 104256, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33957314

RESUMO

Interpopulation venom variation has been widely documented in snakes across large geographical distances. This variability is known to markedly influence the effectiveness of snakebite therapy, as antivenoms manufactured against one population may not be effective against others. In contrast, the extent of intrapopulation venom variability, especially at finer geographical scales, remains largely uninvestigated. Moreover, given the historical focus on the 'big four' Indian snakes, our understanding of venom variation in medically important yet neglected snakes, such as the monocellate cobra (Naja kaouthia), remains unclear. To address this shortcoming, we investigated N. kaouthia venoms sampled across a small spatial scale (<50 km) in Eastern India. An interdisciplinary approach employed in this study unveiled considerable intrapopulation differences in the venom proteomic composition, pharmacological and biochemical activities, and toxicity profiles. Documentation of stark differences in venoms at such a finer geographical scale, despite the influence of similar ecological and environmental conditions, is intriguing. Furthermore, evaluation of in vitro and in vivo venom recognition and neutralisation potential of Indian polyvalent 'big four' antivenoms and Thai monovalent N. kaouthia antivenom revealed concerning deficiencies. These results highlight the negative impact of phylogenetic divergence and intrapopulation snake venom variation on the effectiveness of conventional antivenom therapy. SIGNIFICANCE: In contrast to our understanding of snake venom variation across large distances, which is theorised to be shaped by disparities in ecology and environment, intrapopulation variation at finer geographic scales remains scarcely investigated. Assessment of intrapopulation venom variability in Naja kaouthia at a small spatial scale (<50 km) in Eastern India unravelled considerable differences in venom compositions, activities and potencies. While the influence of subtle differences in prey preference and local adaptations cannot be ruled out, these findings, perhaps, also emphasise the role of accelerated molecular evolutionary regimes that rapidly introduce variations in evolutionarily younger lineages, such as advanced snakes. The inability of 'big four' Indian antivenoms and Thai N. kaouthia monovalent antivenom in countering these variations highlights the importance of phylogenetic considerations for the development of efficacious snakebite therapy. Thus, we provide valuable insights into the venoms of one of the most medically important yet neglected Indian snakes.


Assuntos
Naja naja , Mordeduras de Serpentes , Animais , Antivenenos , Venenos Elapídicos , Elapidae , Índia , Filogenia , Proteômica , Mordeduras de Serpentes/tratamento farmacológico , Tailândia
8.
PLoS Negl Trop Dis ; 15(3): e0009247, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33764996

RESUMO

BACKGROUND: Snakebite in India results in over 58,000 fatalities and a vast number of morbidities annually. The majority of these clinically severe envenomings are attributed to Russell's viper (Daboia russelii), which has a near pan-India distribution. Unfortunately, despite its medical significance, the influence of biogeography on the composition and potency of venom from disparate D. russelii populations, and the repercussions of venom variation on the neutralisation efficacy of marketed Indian antivenoms, remain elusive. METHODS: Here, we employ an integrative approach comprising proteomic characterisation, biochemical analyses, pharmacological assessment, and venom toxicity profiling to elucidate the influence of varying ecology and environment on the pan-Indian populations of D. russelii. We then conducted in vitro venom recognition experiments and in vivo neutralisation assays to evaluate the efficacy of the commercial Indian antivenoms against the geographically disparate D. russelii populations. FINDINGS: We reveal significant intraspecific variation in the composition, biochemical and pharmacological activities and potencies of D. russelii venoms sourced from five distinct biogeographic zones across India. Contrary to our understanding of the consequences of venom variation on the effectiveness of snakebite therapy, commercial antivenom exhibited surprisingly similar neutralisation potencies against the majority of the investigated populations, with the exception of low preclinical efficacy against the semi-arid population from northern India. However, the ability of Indian antivenoms to counter the severe morbid effects of Daboia envenoming remains to be evaluated. CONCLUSION: The concerning lack of antivenom efficacy against the north Indian population of D. russelii, as well as against two other 'big four' snake species in nearby locations, underscores the pressing need to develop pan-India effective antivenoms with improved efficacy in high snakebite burden locales.


Assuntos
Antivenenos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/genética , Animais , Ecossistema , Índia/epidemiologia , Masculino , Camundongos , Filogeografia , Proteoma , Proteínas de Répteis/química , Proteínas de Répteis/genética , Mordeduras de Serpentes/epidemiologia , Espectrometria de Massas em Tandem , Venenos de Víboras/química
9.
PLoS Negl Trop Dis ; 15(2): e0009150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600405

RESUMO

BACKGROUND: Snake venom composition is dictated by various ecological and environmental factors, and can exhibit dramatic variation across geographically disparate populations of the same species. This molecular diversity can undermine the efficacy of snakebite treatments, as antivenoms produced against venom from one population may fail to neutralise others. India is the world's snakebite hotspot, with 58,000 fatalities and 140,000 morbidities occurring annually. Spectacled cobra (Naja naja) and Russell's viper (Daboia russelii) are known to cause the majority of these envenomations, in part due to their near country-wide distributions. However, the impact of differing ecologies and environment on their venom compositions has not been comprehensively studied. METHODS: Here, we used a multi-disciplinary approach consisting of venom proteomics, biochemical and pharmacological analyses, and in vivo research to comparatively analyse N. naja venoms across a broad region (>6000 km; seven populations) covering India's six distinct biogeographical zones. FINDINGS: By generating the most comprehensive pan-Indian proteomic and toxicity profiles to date, we unveil considerable differences in the composition, pharmacological effects and potencies of geographically-distinct venoms from this species and, through the use of immunological assays and preclinical experiments, demonstrate alarming repercussions on antivenom therapy. We find that commercially-available antivenom fails to effectively neutralise envenomations by the pan-Indian populations of N. naja, including a complete lack of neutralisation against the desert Naja population. CONCLUSION: Our findings highlight the significant influence of ecology and environment on snake venom composition and potency, and stress the pressing need to innovate pan-India effective antivenoms to safeguard the lives, limbs and livelihoods of the country's 200,000 annual snakebite victims.


Assuntos
Antivenenos/farmacologia , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Naja naja , Animais , Antivenenos/imunologia , Ecossistema , Geografia , Índia , Proteoma/análise
10.
Toxins (Basel) ; 13(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477742

RESUMO

The Common Krait (Bungarus caeruleus) shares a distribution range with many other 'phenotypically-similar' kraits across the Indian subcontinent. Despite several reports of fatal envenomings by other Bungarus species, commercial Indian antivenoms are only manufactured against B. caeruleus. It is, therefore, imperative to understand the distribution of genetically distinct lineages of kraits, the compositional differences in their venoms, and the consequent impact of venom variation on the (pre)clinical effectiveness of antivenom therapy. To address this knowledge gap, we conducted phylogenetic and comparative venomics investigations of kraits in Southern and Western India. Phylogenetic reconstructions using mitochondrial markers revealed a new species of krait, Romulus' krait (Bungarus romulusi sp. nov.), in Southern India. Additionally, we found that kraits with 17 mid-body dorsal scale rows in Western India do not represent a subspecies of the Sind Krait (B. sindanus walli) as previously believed, but are genetically very similar to B. sindanus in Pakistan. Furthermore, venom proteomics and comparative transcriptomics revealed completely contrasting venom profiles. While the venom gland transcriptomes of all three species were highly similar, venom proteomes and toxicity profiles differed significantly, suggesting the prominent role of post-genomic regulatory mechanisms in shaping the venoms of these cryptic kraits. In vitro venom recognition and in vivo neutralisation experiments revealed a strong negative impact of venom variability on the preclinical performance of commercial antivenoms. While the venom of B. caeruleus was neutralised as per the manufacturer's claim, performance against the venoms of B. sindanus and B. romulusi was poor, highlighting the need for regionally-effective antivenoms in India.


Assuntos
Bungarotoxinas/química , Bungarus/genética , Bungarus/metabolismo , Proteoma , Animais , Antivenenos/química , Evolução Biológica , Bungarus/classificação , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Índia , Masculino , Camundongos , Mitocôndrias/genética , Tipagem Molecular , Paquistão , Filogenia , Proteômica , Especificidade da Espécie
11.
PLoS Negl Trop Dis ; 13(12): e0007899, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31805055

RESUMO

BACKGROUND: Snakebite in India causes the highest annual rates of death (46,000) and disability (140,000) than any other country. Antivenom is the mainstay treatment of snakebite, whose manufacturing protocols, in essence, have remained unchanged for over a century. In India, a polyvalent antivenom is produced for the treatment of envenomations from the so called 'big four' snakes: the spectacled cobra (Naja naja), common krait (Bungarus caeruleus), Russell's viper (Daboia russelii), and saw-scaled viper (Echis carinatus). In addition to the 'big four', India is abode to many other species of venomous snakes that have the potential to inflict severe clinical or, even, lethal envenomations in their human bite victims. Unfortunately, specific antivenoms are not produced against these species and, instead, the 'big four' antivenom is routinely used for the treatment. METHODS: We characterized the venom compositions, biochemical and pharmacological activities and toxicity profiles (mouse model) of the major neglected yet medically important Indian snakes (E. c. sochureki, B. sindanus, B. fasciatus, and two populations of N. kaouthia) and their closest 'big four' congeners. By performing WHO recommended in vitro and in vivo preclinical assays, we evaluated the efficiencies of the commercially marketed Indian antivenoms in recognizing venoms and neutralizing envenomations by these neglected species. FINDINGS: As a consequence of dissimilar ecologies and diet, the medically important snakes investigated exhibited dramatic inter- and intraspecific differences in their venom profiles. Currently marketed antivenoms were found to exhibit poor dose efficacy and venom recognition potential against the 'neglected many'. Premium Serums antivenom failed to neutralise bites from many of the neglected species and one of the 'big four' snakes (North Indian population of B. caeruleus). CONCLUSIONS: This study unravels disturbing deficiencies in dose efficacy and neutralisation capabilities of the currently marketed Indian antivenoms, and emphasises the pressing need to develop region-specific snakebite therapy for the 'neglected many'.


Assuntos
Antitoxinas/farmacologia , Antivenenos/uso terapêutico , Mordeduras de Serpentes/terapia , Venenos de Serpentes/química , Venenos de Serpentes/toxicidade , Animais , Modelos Animais de Doenças , Índia , Masculino , Camundongos , Análise de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA